Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Kernel methods are a popular class of nonlinear predictive models in machine learning. Scalable algorithms for learning kernel models need to be iterative in nature, but convergence can be slow due to poor conditioning. Spectral preconditioning is an important tool to speed-up the convergence of such iterative algorithms for training kernel models. However computing and storing a spectral preconditioner can be expensive which can lead to large computational and storage overheads, precluding the application of kernel methods to problems with large datasets. A Nystrom approximation of the spectral preconditioner is often cheaper to compute and store, and has demonstrated success in practical applications. In this paper we analyze the trade-offs of using such an approximated preconditioner. Specifically, we show that a sample of logarithmic size (as a function of the size of the dataset) enables the Nyström-based approximated preconditioner to accelerate gradient descent nearly as well as the exact preconditioner, while also reducing the computational and storage overheads.more » « less
-
Abstract We consider the problem of estimating the input and hidden variables of a stochastic multi-layer neural network (NN) from an observation of the output. The hidden variables in each layer are represented as matrices with statistical interactions along both rows as well as columns. This problem applies to matrix imputation, signal recovery via deep generative prior models, multi-task and mixed regression, and learning certain classes of two-layer NNs. We extend a recently-developed algorithm—multi-layer vector approximate message passing, for this matrix-valued inference problem. It is shown that the performance of the proposed multi-layer matrix vector approximate message passing algorithm can be exactly predicted in a certain random large-system limit, where the dimensions N × d of the unknown quantities grow as N → ∞ with d fixed. In the two-layer neural-network learning problem, this scaling corresponds to the case where the number of input features as well as training samples grow to infinity but the number of hidden nodes stays fixed. The analysis enables a precise prediction of the parameter and test error of the learning.more » « less
An official website of the United States government

Full Text Available